Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant J ; 112(3): 722-737, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36097863

RESUMO

Plants have developed various protective mechanisms to survive drought stress. Previously, it was shown that a wheat bZIP transcription factor gene TaFD-Like2-1A (TaFDL2-1A) can confer drought tolerance in Arabidopsis. However, the biological functions related to drought stress tolerance of TaFDL2-1A in wheat (Triticum aestivum L.) remain unclear. In the present study, overexpression of TaFDL2-1A in the wheat cultivar Fielder improved drought resistance and conferred abscisic acid (ABA) hypersensitivity. Further analysis showed that overexpression of TaFDL2-1A increased the hypersensitivity of stomata to drought stress and endogenous ABA content under drought conditions. Genetic analysis and transcriptional regulation analysis indicated that TaFDL2-1A binds directly to the promoter fragments of TaRAB21s and TaNCED2s via ACGT core cis-elements, thereby activating their expression, leading to enhanced ABA responses and endogenous ABA accumulation. In addition, our results demonstrate that overexpression of TaFDL2-1A results in higher SOD and GPX activities in wheat under drought conditions by promoting the expression of TaSOD1 and TaGPx1-D, indicating enhanced reactive oxygen species (ROS) scavenging. These results imply that TaFDL2-1A positively regulates ABA biosynthesis, ABA responses, and ROS scavenging to improve drought stress tolerance in transgenic wheat. Our findings improve our understanding of the mechanisms that allow the wheat bZIP transcription factor to improve drought resistance and provide a useful reference gene for breeding programs to enhance drought resistance.


Assuntos
Ácido Abscísico , Arabidopsis , Ácido Abscísico/metabolismo , Triticum/metabolismo , Secas , Espécies Reativas de Oxigênio/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Melhoramento Vegetal , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo
2.
Plant Sci ; 311: 111022, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34482905

RESUMO

Drought has negative effects on cereal production. Studies have shown that many basic leucine zipper transcription factors (bZIP TFs) help to cope with drought stress. In this study, bZIP TF wheat (Triticum aestivum L.) FD-Like2 (TaFDL2) was isolated and functionally analyzed. Three homologs of TaFDL2 were identified and their expression was induced by drought and abscisic acid (ABA) treatment. TaFDL2-1A has transactivation activity and two activation domains, and the domain D region has different effects on the transcriptional activity of the two domains. Analysis of TaFDL2-1A overexpression plants indicated their enhanced drought tolerance and greater sensitivity to ABA. TabZIP8-7A was identified as a protein that interacts with TaFDL2-1A in the nucleus, and the overexpression of TabZIP8-7A conferred greater drought resistance and ABA sensitivity in Arabidopsis. Surprisingly, TaFDL2-1A × TabZIP8-7A double overexpression lines exhibited the highest drought resistance. Genetic and transcriptional regulation analyses demonstrated that stress-response gene transcription was initiated by TaFDL2-1A or TabZIP8-7A via the ABA signaling pathway. Importantly, TaFDL2-1A and TabZIP8-7A synergistically promoted ABA-inducible gene expression in a more efficient manner to form the transcriptional activation complex. Our findings provide new insights into the molecular mechanisms that allow bZIP TFs to regulate ABA signaling in response to drought stress.


Assuntos
Ácido Abscísico/metabolismo , Adaptação Fisiológica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Secas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Transdução de Sinais/genética , Triticum/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , China , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Transdução de Sinais/fisiologia , Triticum/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...